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Abstract—The operation of a Self-Organizing Network (SON)
such that it achieves the objectives of a cellular network
operator is a complex task. The previously presented SON
objective manager enables the automatic management of SON
functions based on formalized operator objectives on network
Key Performance Indicators (KPIs). However, this approach
initially did not consider SON coordination which resolves run-
time conflicts between concurrently executed SON functions.
We present an objective-driven SON coordination which adapts
the SON objective manager approach to SON function conflict
resolution. Therefore, the SON objective manager concept is
based on multiattribute utility theory and the conflict resolution
is modeled as a constraint optimization problem. As a result, this
approach coordinates the execution of SON functions such that
the operator objectives are satisfied as quickly as possible.

I. INTRODUCTION

The Self-Organizing Network (SON) paradigm automates
mobile network operations by introducing self-configuration,
self-optimization, and self-healing features [1]. With the in-
troduction of Long Term Evolution (LTE) or the future 5th
Generation Mobile Networks (5G), the complexity of radio
networks increases considerably making SON a crucial compo-
nent of future network management [1], [2]. SON defines a set
of use cases that are automatically performed by autonomous
SON functions. For self-optimization, this means that a single
function, e.g., Coverage and Capacity Optimization (CCO),
Mobility Robustness Optimization (MRO), or Mobility Load
Balancing (MLB), optimizes the performance of each single
cell with respect to one or a few network Key Performance
Indicators (KPIs), e.g., the Channel Quality Indicator (CQI),
handover ping-pong rate, or cell load, by adjusting one or a
few network configuration parameters, e.g., Remote Electrical
Tilt (RET) or Cell Individual Offset (CIO).

Operators of mobile networks have specific objectives on
the network performance that can be expressed as KPI target
values [3]. Based thereon, SON operations is the process of
instrumenting the SON functions such that the mobile network
is optimized with respect to these objectives. This comprises
two tasks: SON management and SON coordination [1].

SON management configures SON functions such that
they jointly optimize the network regarding the objectives.
In [3], [4], the SON objective manager is presented that
enables operators to manage a SON with machine-readable
objectives. These objectives are rules that, given an opera-
tional context, define desired values and importance for each
KPI. For instance, IF location=rural THEN load ≤

0.8 WITH 0.5 defines that the cell load in a rural area
should be below 80% with medium importance. Since the
operator typically does not know the functional details of SON
functions, the vendor of a SON function is supposed to provide
a SON function model that defines the expected values of the
KPIs that are affected by the SON function, depending on the
configuration of the function. For instance, the MLB function
configuration MLB1 with the effect (load,≤ 0.8) means that
MLB1 is expected to keep the cell load below 80%.

Since a SON function is not observe other functions,
their concurrent execution can lead to conflicts resulting in
inferior performance [1]. Such a conflict happens if, e.g.,
two SON functions attempt to simultaneously change the
same network parameter. SON coordination detects and re-
solves conflicts by controlling the deployment of configuration
changes. Therefore, SON functions request changes at SON
coordination which accepts or rejects the requests such that
the accepted changes are conflict-free. Previously presented
conflict resolution approaches [5]–[8], thereby, do not consider
the operator objectives for their decision making.

We present a new, objective-driven conflict resolution ap-
proach that builds on the SON objective manager, specifically
formalized operator objectives and SON function models. The
contributions of the paper are:

• we design a SON coordination that resolves SON
function conflicts such that the satisfaction of operator
objectives is maximized as quickly as possible,

• we embed the coordination into the SON objective
manager system,

• we generalize the SON objective manager concepts
using multiattribute utility theory by representing the
objectives as utility functions and by providing prob-
abilistic semantics for the SON function models,

• we model and solve conflict resolution as a constraint
optimization problem, and

• we present an evaluation showing the advantages.

As a result, the operator can control SON coordination without
detailed knowledge of the SON functions by setting the objec-
tives and letting the system optimize the network accordingly.

II. CONCEPT

The goal of objective-driven SON coordination is to make
coordination decisions guided by operator objectives. In order
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Figure 1. Performance of the cells c1 and c2 (indicated by the color) and
expected effects of the conflicting SON function requests rf1,c1 and rf2,c2 .

to outline this goal, consider the simple situation depicted in
Figure 1: it shows the performance of two network cells, c1
and c2, regarding the two KPIs handover ping-pong rate, i.e.,
the ratio of quickly reverted handovers from a cell, and the
cell load, i.e., the utilized resources of the cell [1]. Thereby,
c1 performs better than c2 since the lower the ping-pong rate
or the load, the better. Consider the two SON function requests
rf1,c1 and rf2,c2 targeting c1 and c2 as conflicting. Faced with
this situation, it is reasonable to concentrate on the worse
performing cell first, however, only if the expected overall
improvement is reasonably high. In other words, the operator
shall compare the estimated performance improvement with
respect to the objectives for the two requests and select the
one with the higher gain. The goal of objective-driven SON
coordination is to automate such decision making.

In the following, we assume a mobile network with C cells
C = {1, . . . , C}, F SON functions F = {1, . . . , F}, and K
KPIs K = {1, . . . ,K} each with the domain dom(k), k ∈ K.
On each cell c ∈ C, there is an independent instance fc of each
SON function f ∈ F executed. Triggered by certain events,
the SON objective manager configures each SON function
instance fc with a configuration, referred to as SON Function
Configuration Parameter Value (SCV) set, sf,c ∈ Sf according
to the SON function model, the objective model, and the
operational context [4]. We assume batch action coordination
also referred to as synchronized execution [8]. Hence, a SON
function instance fc monitors the performance of c and sends
a request rf,c to the SON coordination if it is necessary to
change the parameters of c. The requests are collected into
the set R which is processed by coordination in periodic time
intervals. After that, each request rf,c ∈ R is either accepted,
allowing fc to perform the parameter change, or rejected.

The objective-driven SON coordination is embedded into
a SON that is managed by the SON objective manager as
depicted in Figure 2. The SON coordinator is configured to-
gether with the SON function instances by passing the current
configuration of all SON functions for all cells, referred to as
SON configuration SC = {sf,c : c ∈ C, f ∈ F}. Furthermore,
the SON coordinator is given the objective model, the SON
function models, and access to the operational context, i.e.,
Configuration Management (CM), Performance Management
(PM), and Failure Management (FM) data, of every cell in
the network. Finally, a conflict detection model is required
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Figure 2. Functional overview of the objective-driven SON coordination.
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Figure 3. Expected KPI utility for KPI effect εMLB,Load and utility uLoad.

allowing the recognition of potential SON functions conflicts.

Figure 2 also outlines the process performed by objective-
driven coordination when processing of the collected requests
is triggered. First, for all r ∈ R the effects are estimated.
Second, R is analyzed for possible conflicts. Third, the effects
of conflicting requests are evaluated based on the operator
objectives and a conflict-free subset of actions that maximizes
the satisfaction of the objectives is determined. The requests
in this set are accepted and the others rejected.

A. Effect Estimation

The idea of effect estimation is to utilize the SON function
models from the SON objective manager in order to estimate
the performance of cell c after the execution of a SON function
request rf,c ∈ R, i.e., after the acceptance of the request.

1) SON Function Model: The SON objective manager
concept assumes that it is possible to estimate the effects
that a specific SON function configuration sf,c has on the
performance of cell c [4]. Specifically, for each SON function
f ∈ F , the vendor of f is supposed to provide a SON function
model SFM f which allows to determine the effects of each
possible configuration for f in a specific operational context.
In [9], the authors outline an approach to create such a model
based on simulations. Hence, we define SFM f (sf,c) = εf,c to
be the effect of the SON function configuration sf,c on the cell
c in the current operational context. An effect εf,c = {εf,c,k :
k ∈ K} is a set of expected values for each KPI k whereby
the KPI effect denotes a range of expected values for k given
the configuration sf,c in the current context.

In this paper, a KPI effect is defined as a probability density
function over the KPI values: a KPI effect εf,c,k ∈ Fk ∪ {⊥}
can either be a probability density function Fk ∈ Fk :



dom(k) → R+, with
∫
dom(k)

Fk(v) dv = 1, or ⊥ indicating
that sf,c does not affect k. This allows modeling of more
complex expected effects, e.g., a normal distribution. Note
that the expected value ranges used in [4] can be modeled
as uniform probability densities that are 0 for unexpected
KPI values. For instance, Figure 3 depicts the KPI effect

εMLB,Load(v) =

{
1.25 v ≤ 0.8

0 v > 0.8
on the load by an MLB

request rMLB,c with the SON function configuration sMLB,c as
a red line. It means that the load is expected to be below 80%.

2) Effect combination: Based on the SON function con-
figuration sf,c and the SON function model SFM f , the SON
coordinator can estimate the effects εf,c of each SON function
f ∈ F . Therefore, it is assumed that εf,c also represents the
expected future effects of the execution of a respective SON
function request rf,c ∈ R. Although the effects typically do not
manifest after the execution of one rf,c, in the long-run, i.e.,
after multiple executions of rf,c, this assumption does hold.

A SON function might not affect all KPIs, i.e., for some
KPI k, εf,c,k = ⊥. In such cases, the value of k will be the
same before and after the execution of rf,c. Hence, the KPI
effect εrf,c,k : Fk of a request rf,c on the KPI k is

εrf,c,k =

{
εf,c,k if εf,c,k 6= ⊥
δχ(c,k) otherwise,

(1)

with χ(c, k) denoting the current monitored value of k in cell
c and δη denoting a Dirac delta function, i.e., a probability
density function assigning the probability 1 to η, thereby
representing a deterministic value in a probabilistic model.
For instance, if an MLB request rMLB,c only affects the load,
then expected CQI is εMLB,CQI(v) = δχ(c,CQI) and the expected
handover ping-pong rate εMLB,PiPo(v) = δχ(c,Pipo).

B. Conflict Detection

Research has identified numerous conflict categories be-
tween two SON functions which might also depend on spa-
tial and temporal characteristics of the functions [1], [6].
Objective-driven SON coordination focuses on conflict reso-
lution and, hence, we draw on known approaches for conflict
detection, e.g., [1], [5], [7]. Independent of the concrete
implementation, conflict detection provides a conflict relation
κ for the collected request R:

κ = {(r1, r2) ∈ R×R : r1 and r2 are in conflict}. (2)

κ is irreflexive and symmetric, but not necessarily transitive.

C. Conflict Resolution

The conflict resolution resolves the conflicts among the
SON function requests by accepting and rejecting them based
on their calculated utility, i.e., the expected performance im-
provements with respect to the operator objectives. Requests
that are not in conflict can be immediately accepted.

1) Objective Model: In [4], the objective model OM
defines the KPI objectives for all KPIs that are applicable
in a specific operational context. That means that each cell
c ∈ C has its own KPI objectives oc,k for all KPIs k ∈ K.
A KPI objective oc,k = (tc,k, wc,k) is a pair of a KPI target

tc,k ⊆ dom(k), i.e., a set of desired KPI values, and a weight
wc,k ∈ [0, 1] representing the importance of the target.

In this paper, this objective model is extended and based
on multiattribute utility theory [10]. This theory is based on
the von Neumann-Morgenstern expected utility theory which
allows to formalize decision making in probabilistic settings
if the preferences over stochastic outcomes of some decision
satisfy an ordering, independence, and continuity assumption:
let p and q be probability distributions over the possible
outcomes of the variable X , then there exists a real-valued
utility function u(·) over X such that the decision option
inducing p is preferred to the option inducing q, denoted
as p � q, if and only if the expected utility of p is
greater than the expected utility of q, i.e., Ep[u] > Eq[u]
with Ep[u] =

∫
X
p(x)u(x) dx and Eq[u] =

∫
X
q(x)u(x) dx.

Furthermore, if the possible outcomes of X are characterized
by m attributes, i.e., X =

∏m
i=1Xi, then, given additive

utility independence, u(·) can be decomposed into an additive,
multiattribute utility function u(x) =

∑m
i=1 kiui(xi) with

x ∈ X , x = (x1, . . . , xm), which is based on utility functions
ui(·) and trade-off weights ki for each criterion Xi.

In this paper, a KPI objective oc,k = (uc,k, wc,k) is a
pair consisting of a utility function uc,k : dom(k) → [0, 1]
mapping a KPI value to a real number between 0 and 1, and a
normalized weight wc,k ∈ [0, 1] with ∀c ∈ C.

∑
k∈K wc,k = 1.

The form of the utility function depends on the preferences of
the operator. For instance, Figure 3 depicts the KPI objective
uLoad(v) = 1− (v/0.75)20

1+(v/0.75)20 on the KPI load as a blue line. It
means that the load should be below 80%. Refer to [11] for
a comparative study of typical functions in the area of mobile
networks. In order to model a desired value range as in [4], the
utility function can be defined as a piecewise linear function
that is 1 for the desired KPI values, and linear decreasing to
0 for the undesired values, whereby the further away a KPI
value is from the desired value range, the smaller the utility.

2) Utility Calculation: Based on multiattribute utility the-
ory, a conflict between two SON function requests is resolved
by considering the operator preferences expressed in the
objective model. The expected utility of the effect εrf,c =∏K
k=1 εrf,c,k of a SON function request rf,c is calculated as

the weighted sum of the expected utilities per KPI:

Eεrf,c [uc] = Eεrf,c [
∑
k∈K

wc,kuc,k] =
∑
k∈K

wc,k Eεrf,c,k [uc,k]

=
∑
k∈K

wc,k

∫
dom(k)

εrf,c,k(v)uc,k(v) dv (3)

Figure 3 outlines this calculation for the KPI effect εMLB,Load
and the KPI objective uLoad as a blue area. The resulting
expected KPI utility for the cell load is EεMLB,Load [uLoad] = 0.93.

Since two conflicting requests rf1,c1 and rf2,c2 might be
executed on different, maybe neighboring cells, the utility
of rf1,c1 also needs to consider the missed performance
improvement by rf2,c2 . To outline this, consider the scenario
in Figure 1: the requests rf1,c1 , which aims to improve the
performance of cell c1, and rf2,c2 , which does the same for
cell c2, are in conflict. Both requests are expected to improve
the respective cell’s performance to an equal state (marked by
the tips of the arrows). Hence, assuming the same objectives,



the expected resulting performance for both requests is equal.
However, since the performance of c2 was much worse than
c1’s before the optimization (indicated by the color), it is
obvious that an operator shall prefer rf2,c2 . Following this
argument, the conflict resolution needs to be based on the
difference in the utility of the cell before and the expected
utility after the execution of the SON function request as

∆urf,c = Eεrf,c [uc]− uc(χc) (4)

whereby uc(χc) =
∑
k∈K uc,k(χc(k)) denotes the utility of

the current performance of cell c, and χc(k) denoting the
current value of KPI k in c.

3) Request Selection: The request selection computes a
conflict-free subset of the collected SON function requests
Rκ ⊆ R that maximizes the satisfaction of the operator
objectives. These requests r ∈ Rκ are accepted, i.e., the
corresponding SON function can perform the configuration
changes, whereas the requests r ∈ R \Rκ are rejected.

Just like the estimated performance of one SON function
request is an outcome with K attributes, Rκ can be seen as an
action that produces an outcome with |Rκ|, i.e., the cardinality
of Rκ, attributes. So, assuming that the operator’s preferences
regarding the performance of a network cell are additive utility
independent (cf. Section II-C1) of the performance of the other
cells, the overall utility of Rκ can be decomposed into a
weighted sum of the utilities of the requests r ∈ Rκ. Consider
wc to be an operator-provided weight of cell c representing
the importance of c. Consequently, the utility of the conflict-
free requests is uRκ =

∑
rf,c∈Rκ wc∆urf,c . Notice that this

summation overestimates the actual utility if two accepted
SON function requests rf1,c and rf2,c affect the same KPI
k in cell c, i.e., εrf1,c,k 6= ⊥ and εrf2,c,k 6= ⊥. In this case
the utility of the improvement of k would be counted twice
although it will only be optimized once. However, such a case
should not occur since two requests that affect the same KPI
in the same cell are typically seen as conflicting [1].

Since the conflict relation does not need to be transitive,
the conflicts cannot be resolved by iteratively selecting the
action with the highest utility for each transitive closure of the
conflicts. In order to outline this, consider three SON function
requests R = {r1, r2, r3} with the utilities ∆ur1 = 0.5,
∆ur2 = 0.4 and ∆ur3 = 0.3, as well as the conflicts
κ = {(r1, r2), (r1, r3)}. The action with the highest utility
in both conflicts is r1, however, the conflict-free subset of the
requests R with the maximal utility is {r2, r3}.

The optimization problem of conflict resolution can be
mapped to a constraint optimization problem [12]. Although
such problems are, in general, NP-hard, modern solvers can
exploit specific problem structures to solve it more efficiently.

maxuRκ =
∑
rf,c∈R

wc∆urf,cvarrf,c (5)

subject to ∀(ri, rj) ∈ κ. varri = 0 ∨ varrj = 0 (6)
∀ri ∈ R. varri ∈ {0, 1} (7)

Equation 7 defines a set of binary variables, one for each
SON function request ri ∈ R, that is optimized by the
solver. Thereby, varri = 1 is indicating acceptance of ri
and varri = 0 is indicating rejection of ri. Equation 6

poses a constraint for each conflict (ri, rj) ∈ κ that the
conflict partners cannot both be accepted, i.e., at least one
of the variables must be 0. Finally, Equation 5 defines the
optimization target as to maximize the weighted sum of the
utilities of the accepted SON function requests. After solving
this problem, the set of accepted SON function requests can
be computed as Rκ = {ri ∈ R : varri = 1}. Note that Rκ is
conflict-free with respect to κ, i.e., ∀ri, rj ∈ Rκ. (ri, rj) 6∈ κ.

III. EVALUATION

In the following, we compare the performance of objective-
driven SON coordination with a policy-based SON coordina-
tion scheme in a realistic network simulation.

A. Scenario

The evaluation is performed using a network simulator
for an urban LTE network in the city of Helsinki, Finland
(presented in detail in [13]). The main technical parameters of
the simulations are summarized in Table I.

To simplify the description, only three KPIs are considered:
the weighted harmonic mean of CQI channel efficiency [14],
the rate of handover ping-pongs (PiPo), and the cell load based
on the average utilized Physical Resource Blocks (PRBs). The
objectives for these KPIs, shown in Table I, are sigmoidal
utility functions as proposed in [11] and can be interpreted
as: the CQI should be above 0.6, the ping-pong rate should
be below 5%, and the cell load should be below 0.8. The
configuration of the network is optimized by three SON
functions which are configured according to the objectives (cf.
[1] for more detailed information on the algorithms):

CCO optimizes the coverage and capacity of a network
cell, i.e., triggered by a low CQI, it adjusts the
RET such that the CQI improves.

MRO optimizes the handover performance between two
neighboring cells, i.e., triggered by a high rate of
handover ping-pongs, it adjusts the CIO such that
the ping-pongs are reduced.

MLB optimizes the load of a cell, i.e., triggered by a
high load, it adjusts the CIO such that more users
are handed over to neighboring cells and, thus, the
load is reduced.

On every cell in the network, there is an instance of each
SON function running. The execution of the SON function
instances is performed in rounds of 100 simulated minutes,
i.e., all instances are synchronously triggered at the end of
every round. If an instance detects a problem, it sends a SON
function request to the SON coordination component, which
collects all requests, coordinates them, and finally notifies the
instances about their acceptance or rejection. If a SON function
request is accepted, the instance performs the configuration
change at the beginning of the next round.

The conflict detection is based on the impact area of the
SON function requests [1] and dependency rules (cf. Table I).
For the conflict resolution, we compare the objective-driven
coordination with the policy-based approach presented in [5]
that prioritizes SON functions. For the latter, the CCO function
is more important than the MRO function which, in turn, is
more important than the MLB function. The SON function



Table I. SIMULATION SETUP

Category Parameter Value

Network

Carrier frequency / bandwidth 2 GHz / 20 MHz
Path loss model UMTS 30.03 [15]
Number of cells / area 32 / 50 km2

User mobility model 6 km/h / random walk
Users normal / hot spot 1500 / 150
Data rate normal / hot spot 200 / 100 kbps Constant Bit Rate
Handover hysteresis threshold 2.0 dB
Radio Link Failures threshold -6.0 dB

Conflict
detection

(CCO, CCO/MRO/MLB) overlapping impact area
(MRO, MLB) overlapping impact area
(MLB, MLB) / (MRO, MRO) none / none
Impact area CCO cell + 1st degree neighbors
Impact area MRO, MLB cell pair

SON
function
models (not
normalized)

CCO: εCCO,CQI(v)
1 : v ≥ 0.6

0 : v < 0.6

MRO: εMRO,PiPo(v)
1 : v ≤ 0.05

0 : v > 0.05

MLB: εMLB,Load(v)
1 : v ≤ 0.8

0 : v > 0.8

Objective
model

CQI: uCQI(v)
(v/0.5)20

1+(v/0.5)20

Ping-pong rate: uPiPo(v) 1− (v/0.075)15

1+(v/0.075)15

Cell load: uLoad(v) 1− (v/0.9)40

1+(v/0.9)40

Objective weights wCQI = wPiPo = wLoad = 1/3

Cell weights ∀c ∈ C. wc = 1

SON function priorities CCO � MRO � MLB

models for the objective-driven conflict resolution are derived
from the configuration of the SON functions. Hence, each SON
function affects only the KPI that it is supposed to optimize
and the KPI effect is derived from the triggering threshold.
For instance, a CCO function request only affects the CQI and
produces a KPI value greater than 0.6 with uniform probability.

The simulation starts with a non-optimal network con-
figuration in order to stimulate optimization by the SON
functions. In the following, we concentrate on one three-
sectored Base Station (BS): one cell has a too low CIO
resulting in an increased ping-pong rate, another cell has a
suboptimal RET setting leading to a reduced CQI, and the
third cell covers a hot spot area rendering it overloaded. Since
all three cells are neighbors, there will be conflicts between
the CCO instance optimizing the RET, and the MRO and
MLB instances optimizing the CIOs. Although this scenario
has been chosen to exemplify the advantage of the objective-
driven coordination approach, such a case can also happen in
reality, e.g., if a new BS is introduced into the network.

B. Results

Figure 4 and Figure 5 depict the results for the policy-
based and the objective-driven coordination. The graphs show
the means and standard deviations of the KPI utilities and
accepted SON function requests for the three degraded cells
over three simulation runs. From the stacked KPI utility means,
one can easily derive the mean overall utility as the sum of
the mean KPI utilities. In all simulations, the initial network
configuration is equal but the user distribution is random.

The policy-based conflict resolution is driven by the func-
tion priorities. As shown in Figure 4, it is first accepting
every CCO function request. All MRO and MLB requests are
rejected until the CCO function is satisfied. This improves the
utility of the CQI objective. Once there are no more requests
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Figure 4. Simulation results of the policy-based SON coordination.
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Figure 5. Simulation results of the objective-driven SON coordination.

by CCO starting in Round 5, it focuses on the improvement
of the ping-pong rate: it accepts all MRO requests and rejects
conflicting MLB requests. Just at Round 6, the first MLB
requests, which are not conflicting with some still executed
MRO function requests, are accepted. Based on the KPIs, it can
be seen that the SON finally adapted the network configuration
to the new situation around Round 14. Later requests are
caused by random variations in the simulations.

The objective-driven coordination, shown in Figure 5, first
analyses the possible improvements of every request, i.e., their
effects. In this scenario, this can be seen as the difference
of each KPI utility of the current system performance to the
maximal KPI utility 1

3 indicated by the dashed lines. Then, it
determines which conflict-free subset of the requests improves
the utility the most. Thus, it computes that the concurrent
execution of the MRO and MLB requests yields a higher
gain than the execution of the RET request. Consequently, the
MRO and MLB requests are accepted in the beginning of the
simulation. Just later on, when the CIOs are close to optimal
in Round 5, the CCO requests are accepted and the CQI
is improved. Considering the KPIs, the SON finally adapted
network configuration to the new situation around Round 13.

Comparing policy-based and objective-driven coordination,
it can be seen that both achieve full objective satisfaction after
around 14 rounds. Thereby, small standard deviations in the
KPI utilities indicate consistent behavior of both approaches.
The little time difference between them is not surprising:
in principle, the scenario requires a common number of
accepted SON function executions, to adapt the network to
the new situation. Furthermore, due to the common conflict-



detection, there is theoretically the same overall selection of
conflict-free SON function request sets both approaches can
choose from. However, the objective-driven SON coordination
achieves great utility increases already in the beginning of the
simulation between Round 4 and 5 because it concentrates
first on the important problems, with respect to the operator
objectives, in the network. In contrast, the policy-driven coor-
dination achieves these improvements later between Round 9
and 10. Of course, this result depends on the specific priorities
of the SON functions in this scenario, and another order could
lead to better performance. However, following this argument
would require the operator to adapt the priorities for each
and every coordination situation which, actually, is a manual
implementation of the objective-driven conflict resolution. This
summarizes the general goal of objective-driven coordination:
focus on the worst problems regarding the operator objectives
that can be overcome quickly.

IV. RELATED WORK

Most proposals for SON coordination are either based on
a fixed policy, i.e., a set of rules, or on some simple evaluation
of the estimated effects of a SON function. [5], [6], and the
“Multi-priority event driven separation in time” in [7] belong
to the former category. Thereby, the operator prioritizes the
SON functions requiring detailed knowledge how each SON
function affects the KPIs. Although the policy allows some
adaptation to the operational context, this is typically limited
to CM data, e.g., the network cell location, and does not con-
sider KPI values. In contrast, the objective-driven coordination
allows the operator to define KPI objectives and let the system
automatically determine the best coordination decision based
on them without human involvement. Note that objective-
driven coordination with a policy requires the non-trivial
calculation of the best action for all possible combinations of
SON function requests in all possible KPI value combinations.

Other approaches are based on estimated effects of exe-
cuted SON functions. The “Self-orchestration through Utility
Predicates” [7] requires the SON functions to predict the utility
of their actions. However, the actual utility calculation is not
presented. In [8], a similar concept is presented that requires
the SON functions to report a “happiness”, a simple technical
performance indication, along with the requests. Using rein-
forcement learning, the approach learns which combination
of accepted requests yields the highest expected improvement
in the happiness. However, learning the happiness, i.e., the
combined performance evaluation over several KPIs, renders
the learned knowledge useless if the objectives, in this case
simple KPI thresholds, change. In contrast to the objective-
driven coordination, these approaches do not consider the
operator defined, SON function independent KPI objectives for
their decision making. Furthermore, they only consider simple
SON function conflicts and do not provide an optimal solution
for complex conflicts spanning several network cells.

V. CONCLUSION

This paper presented an objective-driven conflict resolution
approach for Self-Organizing Network (SON) coordination
that is based on the SON objective manager concept. The
introduction of probabilistic SON function models, which
estimate the expected performance effects of a SON function

instance, and multiattribute utility theory-based objectives,
which describe the operator preferences regarding the network
performance, enable the valuation of change requests by SON
function instances. Based on these utilities, it is possible to
determine a conflict-free subset of the SON function requests
that maximizes the satisfaction of the objectives by solving
a constraint optimization problem. As a result, the operator
can control SON coordination without detailed knowledge
of the SON functions by solely setting the objectives and
letting the system optimize the network to satisfy them. A
simulation-based evaluation shows that the approach focuses
the SON function activities to severe network problems first,
thus, improving the overall network performance faster than
related approaches. In the future, we plan to improve the effect
estimation by the SON function models with machine learning.
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