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Abstract—Policy-based management is a flexible approach
for the management of complex systems as policies make
context-sensitive and automated decisions. For the effective
development of policies it is desired to specify policies at a
high level of abstraction initially, and to refine them until they
are represented in a machine-executable way. We present an
approach that uses models to specify event-condition-action
(ECA) policies at different levels of abstraction. A relational
algebra is used to specify and validate the models in a formal
way. Finally, executable policy code is generated from the low-
level models. The approach is generic as it can be applied
to any domain and supports a flexible number of abstraction
layers. It is applied to the network management domain and
demonstrated with the modeling and refinement of policies for
coverage optimization in a mobile network.

Keywords-domain; policy; ECA; modeling; refinement;
MDE; network management

I. INTRODUCTION

Increasing complexity of enterprise computing systems
complicates their development and management. This evo-
lution calls for changes in the way enterprise computing
systems are built. The aspect of development is addressed
by the Model-Driven Engineering (MDE) approach, which
moves the focus from a code-centric to a model-centric point
of view [1]. Models raise the level of abstraction and reduce
complexity by separating different concerns of a system
from each other. Models in MDE are no more used for
discussion and documentation purposes only, but they are
used as primary artifacts from which implementations are
generated [2]. Apart from development, increasing complex-
ity also affects the management of systems at runtime. This
issue is addressed by the idea of self-organizing systems.
One example is the Autonomic Computing Initiative by
IBM, which proposes self-manageable systems in order to
reduce human intervention necessary for performing admin-
istrative tasks [3].

Policies represent a promising technique for realizing
autonomic capabilities within managed objects as they allow
for a high level of automation and abstraction. Policy-based
management has gained attention in research and industry
as a management paradigm as it allows administrators to
adapt the behavior of a complex system without changing
source code or considering technical details. A system can

continuously be adjusted to externally imposed constraints
by changing the determining policies [4]. A well-known
application area is network management, where policies are
widely used for performing configuration processes. The
usage of policy-based systems for management of mobile
networks was recently considered in [5]–[10].

The event-condition-action (ECA) model is a common
way to specify policies. ECA policies represent reaction
rules that specify the reactive behavior of a system. An ECA
policy correlates a set of events, a set of conditions, and a
set of actions to specify the reaction to a certain situation.
The conditions are evaluated on the occurrence of an event
and determine whether the policy is applicable or not in
that particular situation. The actions are only executed if the
conditions are met. Multiple policy frameworks share this
model as for example Ponder2 [11].

Policy-based management is a layered approach where
policies exist at different levels of abstraction. For simple
systems it might be sufficient to have one or two abstraction
levels only, one with a business view and another one
with a technical view. For larger systems or systems in
a complex domain it is reasonable to introduce additional
levels between the business and the technical level in order
to allow for domain and policy representation at intermediate
abstraction levels. Strassner defines a flexible number of
abstraction layers as the Policy Continuum [5]. The idea
is to define and manage policies at each level in a domain-
specific terminology, and to refine them from a business level
down to a technical level.

This paper is structured as follows. Section II describes
how domain-specific policies are modeled at different levels
of abstraction before executable code is generated. Sec-
tion III provides an example from a case study. Related
work is discussed in section IV. The paper concludes with
a summary and future work in section V.

II. MODELING

Different types of models are used at different abstraction
layers in order to specify domain-specific policies as illus-
trated in figure 1. The domain model allows domain experts
to specify domain-specific concepts that are available in a
system. The policy model allows policy experts to specify



policies that are used to manage a system. The linking model
allows to link the policy model to the domain model in
order to use the domain-specific concepts within the policies.
For each of those models a metamodel exists that defines
the structure of the model. Two layers i and j are shown
exemplarily in figure 1 with layer i providing a higher level
and layer j providing a lower level of abstraction. Actually,
the approach supports a flexible number of abstraction
layers.
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Figure 1. Methodology

A relational algebra was developed to formally define the
semantics of the domain, policy, and linking metamodels
and their views at the different abstraction layers. Excerpts
of the algebra are presented in this paper.

A. Domain Modeling

Different expert groups are involved in the management of
an enterprise computing system such as business managers
or system administrators. Depending on their focus and their
background, members of an expert group have a particular
view on the system and they use special terminology to
describe their knowledge. The domain represents a common
understanding of those expert groups and covers the context
of an enterprise computing system.

Any relevant information about the domain is covered by
the domain model. The domain model covers the domain-
specific concepts across all abstraction layers and specifies
which domain-specific concepts are available. Its purpose
is to specify domain knowledge independently from any
policies, which will later control a system in that domain.
Thus it represents the basis for building policies, which
will then use domain concepts in their event, condition, and
action parts. The domain model offers a particular view at
any layer, which only contains the part of the domain model
that is relevant at the respective layer. The domain model

is an instance of the domain metamodel, which allows to
specify domain models in a way that is more expressive
than just a domain-specific vocabulary and close to the
structure of an ontology. For this purpose, the metamodel
represents domain-specific knowledge as shown in figure 2.
It represents the abstract syntax of the domain, i.e. it defines
the structure of the domain model.

Figure 2. Domain metamodel

B. Policy Modeling

In the same way as expert groups have a particular view
onto the domain, they also have a particular view onto the
policies that control a system in that domain. A business
expert e.g. uses different terminology to express a policy
than a system administrator would do for the same policy.
Also, a business policy might be represented by several
technical policies at a lower abstraction layer.

Any information about the policies is covered by the
policy model. The policy model offers a particular view at
any layer, which only contains the part of the policy model
that is relevant at the respective layer. The policy model
is an instance of the policy metamodel, which contains the
essential aspects required to define basic ECA policies. It
is shown in figure 3 and represents the abstract syntax of
policies, i.e. it defines the structure of the policy model. Var-
ious policy languages are available for different domains and
application areas. A policy language usually provides some
structured notation for policies and can be interpreted by an
execution engine. Typically, such engines provide means to
cope with priorization and conflict resolution, which reduces
complexity for the developer. When developing a policy-
based system, a decision for a policy language has to be
made at some point. Unfortunately, no policy language is
general and powerful enough to meet the requirements of
any system in any domain. It is desired to specify policies
independently from a particular policy language and to
generate code for a particular language. For this purpose
some well-known policy languages such as PonderTalk [11],
KAoS [12], and Rei [13] were analyzed. Their common
concepts are considered by the policy metamodel.



Figure 3. Policy metamodel

C. Domain-Specific Policy Modeling

Domain and policies have been modeled independently
from each other so far. The domain is specified as the domain
model and policies are specified as the policy model. Now,
both models must be combined in order to use the entities
of the domain within the policies. For this purpose, a third
type of model enables policies to refer to domain-specific
information in their event, condition, and action part.

Any information about how domain-specific information
is used within the policies is covered by the linking model.
It specifies how the domain and the policy models are linked
to each other. For this purpose, it allows to create links from
the entities in the policy model to the entities in the domain
model at the respective layers. The linking model offers a
particular view at any layer, which only contains the links
that are relevant at the respective layer. The linking model is
an instance of the linking metamodel, which provides means
to create links from the policy model to the domain model
as shown in figure 4. It represents the abstract syntax of the
links, i.e. it defines the structure of the linking model.

The formal specification defines the structure of the link-
ing model. Additionally, some restrictions must hold on the
contents of a linking model. Those restrictions are used in
order to validate wheter a linking model is valid or not.
One example is the usage of context information within a
policy. Context information is usually passed to a policy via
its events. The event properties contain information to be
used within the policy and can be referenced in the policy
condition and action. It is important that only properties
are used within a policy that are visible for that policy. A
property is visible for a policy if it belongs to a domain
concept that occurs as event of that policy. This restriction
is covered by (1) to (3) in the formal specification.

Figure 4. Linking Metamodel

arg ∈ argumentsOfCondition(cd) ⇒
(arg ∉ Properties ∨ ∀po ∈ policiesOfCondition(cd).
arg ∈ visibleProperties(po))

(1)

arg ∈ argumentsOfAction(ac) ⇒
(arg ∉ Properties ∨ ∀po ∈ policiesOfAction(ac).
arg ∈ visibleProperties(po))

(2)

visibleProperties ∶ IdPo → P(IdPr)
po↦ ⋃

co∈visibleConcepts

propertiesOfConcept(co)

with visibleConcepts =
⋃

ev∈eventsOfPolicy(po)
conceptOfEvent(ev)

(3)

D. Code Generation

Once the domain, policy, and linking models have been
refined to the lowest abstraction layer they are represented
in a machine-executable way. The domain model represents
the necessary concepts of the underlying system components
and the policy and linking models represent policies that
control the behavior of those components. Executable code
in a policy language can now be generated from the models.
This applies to any language that is able to express ECA
policies as defined by the policy metamodel.

For this purpose, model transformations generate the pol-
icy code in a fully automated way. This involves model-to-
model and model-to-text transformations, which first trans-
form the policy and linking models into an intermediate
representation and then into executable policy code. Trans-
formation was implemented as proof of concept for the
Ponder2 policy framework [11], which was developed at
Imperial College over a number of years. Details of the
transformation are presented in [14].



III. CASE STUDY

Management of information systems is a complex task
especially in the management of mobile networks. Complex-
ity arises from the distributed architecture of the underlying
cellular network with its high number of network elements
(NEs) to be deployed and managed and interdependencies
between their configurations.

Operation, administration, and maintenance (OAM) of a
mobile network is usually based on a centralized information
system which is organized in different management domains.
Configuration management (CM) deals with a consistent
configuration of all NEs, performance management (PM)
analyzes the efficiency of the current network configuration
and seeks a more efficient one, and fault management (FM)
detects and resolves errors that occur in the network. Any
management domain focusses on different aspects and has a
special view onto the network and the configurations of the
NEs.

A. Policy-Based Coverage Optimization
One important management task within any cellular net-

work is coverage optimization. The cells of the network
should always provide a complete coverage without areas
having no coverage at all. The detection and resolution of
converage holes is a complex task as it affects any of the
CM, PM, and FM domains. The coverage area of each cell
is determined through multiple factors.
● Position: Location and direction of an antenna are the

main determining factors for the coverage area of a
cell. These parameters are preplanned and are almost
not adjustable after deployment as this would require
expensive human on-site intervention.

● Transmission power: Later adaptations of the trans-
mission power (TXP) have a direct impact on the size
of a cell’s coverage area. Adaptations can be performed
remotely through the operation and maintenance sys-
tem.

● Antenna tilt: Tilt influences coverage similarly to TXP.
A rough mechanical adjustment is done when the an-
tenna is deployed. Later adaptations of the antenna tilt
are done through remote electrical tilt changes (RET)
within the antenna.

In order to optimize coverage within the network, usually
a sequence of power and tilt adaptations is used since they
can be executed remotely. After each change the situation is
re-evaluated by analysis of measurement reports. The results
of this evaluation are used to determine whether additional
adaptions are required or not. Due to the cellular structure of
the network, power and tilt adaptations have a strong impact.
Adaptions at a single cell may have impact on adjacent cells
and may result in a conflict and thus undesired state of the
network.

The dependencies between power and tilt adaptions re-
quire subsequent adaptions to be coordinated with each other

in order to ensure that no logical errors, oscillations, or
even deadlocks occur in the configuration. For this purpose
a policy-based coordination mechanism was developed that
takes decisions in an automated way [9], [10]. The coor-
dination policies express the decision logic to determine
if a change request should be acknowledged, rejected, or
rescheduled, and if previously executed requests should be
rolled back. They are represented at multiple abstraction
layers. The highest layer represents a management point-of-
view whereas the lowest layer represents a specific imple-
mentation for the underlying management system that uses
Ponder2 [11] as policy framework.

B. Policy Modeling and Code Generation

The behavior of coverage optimization is controled by a
set of ECA coordination policies. Policy modeling makes it
possible to model those policies at a high level initially and
to refine them afterwards. For this purpose, a domain model
was specified that covers the relevant concepts for coverage
optimization at different abstraction layers. The necessary
coordination policies were specified as policy model at the
highest layer and they were linked to the domain model
with a linking model. An example is shown in the following.
One coordination policy ensures that tilt change requests are
rescheduled if a power change is already active. An excerpt
of the respective high-level models is shown in figure 5.
The refined low-level policy provides the same functionality
as the high-level one but uses the technical concepts of the
underlying management system. An excerpt of the respective
low-level models is shown in figure 6.

Figure 5. High-level model

During refinement, some high-level entities are replaced
with low-level ones, e.g. the tiltChangeRequest concept
with the reconfRequest one or the isPowerChangeAc-
tive.targetCell parameter with the isReconfActive.property



Figure 6. Low-level model

one. Furthermore, information is added by means of the ad-
ditional parameter isReconfActive.type and the passed value
”TXP” in the invoking of the isReconfActive operation.

The case study was used as a proof of concept of the
approach. The concepts of the network management system
were specified as domain model and the policies of the
coordination mechanism were specified as policy model and
then linked to the domain model. The models were initially
modeled at the highest layer and then refined into a machine-
executable representation at the lowest layer. In the end
the refined models were automatically transformed into the
Ponder2 code shown in listing 1. This code is directly used
by the underlying simulation system [15].

1 policy := root/factory/ecapolicy create.
2 policy event: root/event/reconfRequest;
3 condition: [ :reconfRequest.id :reconfRequest.type

:reconfRequest.property :reconfRequest.
changeValue | root/op isReconfActive:"TXP"
property:reconfRequest.property ];

4 action: [ :reconfRequest.id :reconfRequest.type :
reconfRequest.property :reconfRequest.
changeValue | root/op rescheduleReconfRequest:
reconfRequest.id ].

5 root/policy at:"coordinationPolicy" put:policy.
6 policy active: true.

Listing 1. Generated Ponder2 Code

IV. RELATED WORK

This section summarizes approaches for the specification
and refinement of policies that are comparable to the ap-
proach presented in this paper. The features are compared to
the features of the other apporaches and their commonalities
and differences are outlined in table I.

The authors of [16] present a model-driven approach to
design policies and integrate them into the software develop-
ment process. The approach is based on MDE concepts and
uses a UML profile for modeling policies. GPML supports
different types of policy and ECA policies are represented by
the obligation policy type. The ability to define a particular
vocabulary allows to adapt policies to different domains.

Policies are modeled at a low level of abstraction and
cannot be refined. Model transformations are used to map
GPML policies via an interchange format to existing policy
languages. No formal semantics is provided.

The CIM Policy Model [17] by the DMTF addresses the
management of complex multi-vendor environments with a
huge number of heterogeneous devices. Policies are specified
in a language-independent way and abstract from hardware
characteristics. A UML profile is provided for the graphical
representation of policies. The CIM Policy Model is a
domain-specific model with a focus on network manage-
ment. Different abstraction levels and policy refinement
are not supported. The approach does not address code
generation for existing policy languages. Formal semantics
is not provided.

DEN-ng [6] by the TMF provides an information model
for system entities and policies to manage those enti-
ties. It allows entities and policies to be modeled in an
implementation-independent way while omitting technical
details. ECA policies can be modeled in a UML diagram.
DEN-ng allows to specify a domain and resources within
that domain on which policies operate. DEN-ng is based on
the Policy Continuum and considers policies at different lev-
els of abstraction. Specification of policies is addressed but
policies cannot be refined automatically into a lower level of
abstraction, nor transformed into an existing language. No
formal semantics is provided.

[7] presents a refinement approach that focuses on poli-
cies in the autonomic networking domain. Policies represent
configuration settings and are used for automated network
and resource configuration. A simple policy language offers
a fixed terminology to specify domain-specific policies.
Event-based policies are not supported. Policies are repre-
sented at five levels of a Policy Continuum and each layer
offers a sub-set of that terminology. A wizard provides a
graphical user interface to specify configuration policies on
the highest level. Those policies are automatically refined
into concrete configuration commands on a per-device basis.
For this purpose, XSLT transformations replace higher-level
objects with the respective objects at the lower levels. Formal
semantics and code generation for existing languages are not
provided.

V. CONCLUSION

A model-based approach to the specification of ECA
policies was presented in this paper. The usage of models
allows to specify policies in a graphical way at a high
level of abstraction initially. This avoids the immediate
implementation of policies at a technical level. Refinement
of domain-specific policies is simplified in several ways.
Domain and policy aspects are consequently separated from
each other into different models. The usage of different
models at different layers faciliates the collaboration of
different experts groups. Additionally, the respective models
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ECA policies + o + - +
Graphical modeling + + + + +
Formal specification - - - - +
Language-independent + + + - +
Customizable domain + - + - +
Abstraction levels - - + + +
Automated refinement - - - + -
Code generation + - - - +

Table I
COMPARISON OF RELATED WORK

are instances of the same metamodels at any abstraction
layer. A relational algebra precisely defines the semantics
of the models and allows for their validation, which is a
prerequisite for the transformation into executable code. The
approach is novel as it is generic with respect to the domain
and to the number of abstraction levels and nevertheless
allows to generate executable code.

The possibility to generate code eliminates the depen-
dency from a particular policy language as the same models
can be used to generate code for various languages. A
prototype of a graphical policy editor that supports code
generation for Ponder2 has already been developed [14], [18]
and is to be developed further. Automating policy refinement
is also subject to future work. Currently the lower-level
models are created manually based on the higher-level ones.
However, it should be sufficient to specify the refinement
of the domain model once and then apply that refinement
to the policy and linking models in order to generate a
refined representation of them whenever they are created
or modified. In the end the objective is to automatically
reflect changes of the high-level models in their low-level
implementation.
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